
LINKÖPING UNIVERSITY

TNCG13

FRACTURING

PROJECT REPORT

Johan ELIASSON

Kristina ENGSTRÖM

johel964@student.liu.se
krien026@student.liu.se

December 17, 2015



4 DISCUSSION

1 Introduction

This project is a fracture script for Maya written
in Python for creating fractures on objects using a
non-physically-based basic procedural method.

1.1 Background

When doing fracturing there are two possible
approaches, physically-based or non-physically-
based[1]. The physical model mimics the real
world in fracture behaviour and is commonly used
to simulate the real world. For more artistic frac-
turing the non-physically methods are used. This
can be implemented both as image-based models,
procedural models and a combination of both.

2 Method

The approach is to use a procedural method[1] to
split a geometry into sub-meshes is described in
pseudocode bellow.

getCenterOfGeometry()
for numOfCuts{

generateRandomPoint(
centerOfGeometry - threshold,

centerOfGeometry + threshold)
cutGeometry(randomPoint,
randomAngle)

}
separateToSubMeshes()
addRigidBody(submeshes)

The algorithm gets the center of the chosen geom-
etry for fracturing. For a user specified number
of iterations the algorithm creates a random seed
point inside a limited area around the geometry
center. From this seed point a cut operation is per-
formed, at a random angle, and creates a new edge
trough the original geometry. After all iterations
has been completed, an operation splits the orig-
inal geometry along the created edges into new
sub-meshes. In the last step all sub-meshes are
given a rigid body to interact with both each other
and other objects in the scene, using mayas built-
in physics.

This describes the most basic behaviour for the al-
gorithm, which is possible to extended for interac-
tion between seed points to create more realistic
fracturing behaviour.

3 Result

The result of the method applied on a cube and a
plane can been seen in figure 3.1 and 3.2.

Figure 3.1: Left: Fracturing applied on a cube.
Right: Cube rendered with glass mate-
rial free falling on to the ground.

Figure 3.2: Left: Fracturing applied on a extruded
plane. Right: Plane rendered with glass
material and collided with a bullet.

4 Discussion

There has been many challenges during the
projects. Much time has been spent trying to solve
all these problems and many could have been
avoided with more experience in using maya and
Python.

4.1 Technical challenges

The polyCut function splits the object and extract
new faces trough the whole object, instead of just
making an edge between a seed point and another
point or edge. This made a limitation in the ap-
pearance of a split as it would always be straight.

2



4.2 Theoretical challenges References

Generating faces for the inside of an object af-
ter the separation resulted in a lot of problems,
which is still unsolved for 3d-geometries. Two ap-
proaches to solve the problem has been tested.
The first was to locate border vertices to connect
them and generate a new face, this approach was
too complicated as no method to determine bor-
der vertices was obtained.
The second approach was using the built-in func-
tion closeBorder to close holes, but the method was
unstable and instead of generating a new face it
could invert the normals of the geometry instead
of generating a new face.

4.2 Theoretical challenges

To make a fully procedural algorithm there would
be requirements for dependencies between the
seed points inside the geometry. In this method
each seed point is created without knowledge of
the location of the others. This could result in
many points being placed close to each other in
some places and spread out in other places, with-
out the user having any control of where these
hotspots would be located.

5 Improvements

Instead of writing the fracturing as a python script
is should have been written as a c++ plugin. Both
to optimize its performance and also get more
more control of the objects structure.

The procedural method could be improved in
many ways. The main improvement to be made
is to make each seed point aware of each other.
This would give the user the possibility to create

hotspots and empty regions by letting certain loca-
tions and/or points repel and attract other points.
To provide better looking results the algorithm
should spawn points inside the geometry and then
make cuts between the inside points and surface
points. This would make the fracturing look more
realistic.

To make it simpler for a user to control the algo-
rithm there would be an implemented user inter-
face. This would give more freedom to the user
and would not require programing knowledge to
change the look of the fracturing.

6 Lessons

The choice of making a Python script to Maya was
that it sounded like the simplest way. Unfortu-
nately this was not the case. Maya’s API for Python
limited the project by only letting us use the tools
provided in maya. If we would have implemented
this as a c++ plugin it would have given us more
power to manipulate and create the vertices as we
wanted. This would hopefully led to a more realis-
tic and good looking result, both for the cracks of
the fracture but also enabled us to create faces on
the inside of the geometry.

References

[1] Lien Muguercia Torres. Fracture Modeling in
Computer Graphics. A thesis submitted in par-
tial fulfilment of the requirements for the de-
gree of Master universitario en Informatica In-
dustrial, Automatica, Computacion y Sistemas,
Advisors: Dr. Gustavo A. Patow and Dr. Carles
Bosch, Universitat de Girona, 2011.

3


	Introduction
	Background

	Method
	Result
	Discussion
	Technical challenges
	Theoretical challenges

	Improvements
	Lessons

